skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geda, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A growing concern of climate change and waste pollution is causing a shift in products towards green materials. The automotive industry is exploring environmentally friendly alternatives to glass fibers (GF). This research focuses on understanding interactions between constituents of biocomposites made up of basalt fiber (BF) and hemp hurd particle fiber (HF) reinforced polypropylene (PP), and statistically comparing the mechanical properties. The addition of a coupling agent has significantly improved the performance and fiber-matrix interactions in the biocomposite blends. The elastic modulus of some BF/HF/PP mixtures were comparable to the GF/PP composite; however, the GF still outperformed in strength. Rotational and capillary rheometer analysis determined the viscosities of all formulations displaying that basalt composites were consistently lower in viscosity than the glass fiber composite, indicating easier processing conditions. 
    more » « less
  2. Lignin, while economically and environmentally beneficial, has had limited success in use in reinforcing carbon fibers due to harmful chemicals used in biomass pretreatment along with the limited physical interactions between lignin and polyacrylonitrile (PAN) during the spinning process. The focus of this study is to use lignin obtained from chemical-free oxidative biomass pretreatment (WEx) for blending with PAN at melt spinning conditions to produce carbon fiber precursors. In this study, the dynamic rheology of blending PAN with biorefinery lignin obtained from the WEx process is investigated with the addition of 1-butyl-3-methylimidazolium chloride as a plasticizer to address the current barriers of developing PAN/lignin carbon fiber precursors in the melt-spinning process. Lignin was esterified using butyric anhydride to reduce its hydrophilicity and to enhance its interactions with PAN. The studies indicate that butyration of the lignin (BL) increased non-Newtonian behavior and decreased thermo-reversibility of blends. The slope of the Han plot was found to be around 1.47 for PAN at 150 °C and decreased with increasing lignin concentrations as well as temperature. However, these blends were found to have higher elasticity and solution yield stress (47.6 Pa at 20%wt BL and 190 °C) when compared to pure PAN (5.8 Pa at 190 °C). The results from this study are significant for understanding lignin–PAN interactions during melt spinning for lower-cost carbon fibers. 
    more » « less